
Diatomic vibrational spectra

Molecular vibrations

 Typical potential energy curve of a
diatomic molecule:

 Parabolic approximation close to Re:
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k = force constant of the bond. The steeper the walls of the
potential, the stiffer the bond, the greater the force constant.

 Connection between the shape of molecular potential energy
curve and k: we expand V(x) around R = Re by a Taylor series:

    2

0
2

2
2

0
2

2

0

x
dx

Vd

2

1
...x

dx

Vd

2

1
x

dx

dV
0VxV








































 V(0) = constant set arbitrarily to zero.
 first derivative of V is 0 at the minimum.
 for small displacements we ignore all high terms.

Hence, the first approximation to a
molecular potential energy curve is a
parabolic potential with:
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 if V(x) is sharply curved, k is large.
 if V(x) is wide and shallow, k is small.



 Schrödinger equation for the relative motion of two atoms of
masses m1 and m2 with a parabolic potential energy:
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where meff = effective (or reduced) mass:
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 Use of meff  to consider the problem from the perspective of
the motion of molecule as a whole.
Example: homonuclear diatomic m1 = m2 = m: .2/mmeff 

XH, where mX >> mH: .mm Heff 

 Same Schrödinger equation as for the particle of mass m
undergoing harmonic motion. Therefore, the permitted
vibrational energy levels are:
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The vibrational wavefunctions are the same as those
discussed for the harmonic oscillator. Important to notice that
En depends on meff and not on the total mass.

Selection rules

 Gross selection rule for a change in
vibrational state (absorption or emission):
the electric dipole moment of the molecule
(not necessarily permanent) must change
when the atoms are displaced relative to
one another.



 IR active molecules: heteronuclear diatomic.
IR inactive molecules: homonuclear diatomic.

Not all the modes of polyatomic molecules are vibrationally
active (e.g.: the symmetric stretch of CO2, in which the C –O–C
bonds stretch and contract symmetrically is inactive.

 Specific selection rules: analysis of the expression of the
transition dipole moment and the properties of integrals over
harmonic oscillator wavefunctions, gives (tedious calculation):
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 It follows that the allowed nn 1 vibrational transitions are:
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 lies in the infrared, so vibrational transitions absorb and
generate infrared radiation. The vibrational spectrum provides
the force constant of the bond.

 At room temperature 1-
B cm200T/hck  << most vibrational

wavenumbers.
 Boltzmann: most molecules in their ground states.
 dominant spectral transition: fundamental transition 01 .
 spectrum consists of a single absorption line.

If the molecules are formed in their vibrationally excited state
(e.g. , *HF2FH 22  ) , transitions 45  , 34  , … may

also appear (in emission).
 all these lines lie at the same frequency
 spectrum expected to consist of a single line.
 NO! Breakdown of the harmonic approximation.



Anharmonicity

 Harmonic oscillator is only a parabolic approximation to the
actual molecular potential energy curve:
 does not allow a bond to dissociate.
 at high vibrational excitations, not enough spread of the
vibrational wavefunction.

Hence the additional terms in the Taylor expansion of V must
be retained.

 The motion is anharmonic (restoring force no longer
proportional to the displacement)

 Because the actual curve is less confining than a parabola, we
can anticipate that the energy levels become less widely
spaced at high excitations.

The convergence of energy levels

 One approach to anharmonicity is the
Morse potential energy:
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De = depth of the potential minimum, D0 = dissociation energy.

 at R close to Re, parabolic behaviour (cf. Taylor expansion).
 allows for dissociation at large displacements.



 Schrödinger equation can be solved
and the permitted energy levels are:
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xe = anharmonicity constant.

 # of vibrational levels is infinite, and n = 0, 1, 2,…, nmax.
 2nd term in En substracts from 1st with increasing effect as n
increases. Hence, convergence of the levels at high quantum
numbers.

 Although the Morse oscillator is quite useful theoretically, in
practice we fit the experimental data with the more general
expression:
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xe, ye, … = empirical dimensionless constants characteristic of
the molecule  allowing to find its dissociation energy.

 Transitions with n = +1: ...x)1(2E e2/1    nn
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 when xe > 0, transitions move to lower  as n increases.



 Anharmonicity accounts for the appearance of additional weak
absorption lines (transitions 02  or 03  ,…) even though
these overtones are forbidden by the selection rule n = ±1.

First overtone absorption:   ...x3222EE e2   nnn

 selection rule is derived from the harmonic oscillator
wavefunctions  approximation! All n values allowed, but n
> 1 transitions allowed only weakly if anharmonicity is slight.

The Birge-Sponer plot

 Graphical technique: the Birge-Sponer plot
is used to determine the dissociation
energy, D0, of the bond  if we write
En+1/2 = En+1-En ( nn 1 ) then:
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Hence, D0 = area under the plot of
En+1/2 against n+1/2

 terms decrease linearly when xe is
taken into account.
 inaccessible part of the spectrum
estimated by linear extrapolation.
 most actual plots are not linear (as
shown here) so the D0 value obtained
is an overestimate.



Vibration-Rotation
spectra

High resolution vibrational
spectrum of gas-phase HCl

 For a heteronuclear diatomic molecule:
 each line = large number of closely spaced components.
 separation < 10 cm-1  suggestive of rotational transitions.

 Hence, molecular spectra are often called band spectra.

 Rotational change is expected since (classically) the transition
leads to a sudden increase/decrease in instantaneous bond
length. Therefore, rotation is retarded/accelerated by a
vibrational transition (think “ice-skaters”).

Spectral branches of diatomic molecules

 Detailed quantum mechanical analysis of simultaneous
vibration and rotation changes shows that the rotational
quantum number J changes by ±1 during the vibrational
transition. If the molecule also possesses angular momentum
about its axis, then the selection rules also allow J = 0.

 Appearance of the diatomic V-R spectrum discussed in terms
of the combination (ignoring anharmonicity and centrifugal
distortion):
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 B should depend on the vibrational state because, as n
increases, the molecule swells slightly and the moment of
inertia changes. We will ignore this for the time being.

 When the vibrational transition nn 1 occurs, J changes by
±1 and in some cases by 0 (when J = 0 is allowed). The
absorptions then fall into three groups called branches of the
spectrum:

 P branch: lines with J = -1:
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 Q branch: lines with J = 0:
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 for all J values. Appears at the
vibrational transition  . (Forbidden in
HCl, hence the gap.)

 R branch: lines with J = +1:
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 Line intensities = reflecting both the population of rotational
levels and the magnitude of the JJ 1 transition moment.

 The separation between lines in the P and R branches of a
vibrational transition gives the value of B (or B), hence the
bond length (as with a pure rotational microwave spectrum).



Combination differences

 Rotational constants of vibrationally excited state n: Bn:
 Anharmonicity : B1<B0 in general (because extended bond)
 Q branch (if it exists): series of closely spaced lines.
 R branch: lines converge slightly as J increases.
 P branch: lines diverge.

Hence:
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 Combination differences: method to determine B 0 and B 1

individually (widely used in spectroscopy):

 Transitions  1R  J and  1P  J have a common upper

state, dependence on B0 only:

    









2

1
B411 0PR JJJ

 Similarly, )(R J and )(P J have a

common lower state, dependence on B1

only:
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 Therefore, plot of the combination
difference against J+½  straight line
of slope 4B0 (any deviation from
straight line = consequence of
centrifugal distortion).

 The two rotational constants of 1H35Cl found in this way are B 0

= 10.440 cm-1 and B 1 = 10.136 cm-1.



Vibrational Raman spectra of diatomic molecules

 Gross selection rule for vibrational Raman: polarizability should
change as molecule vibrates. Hence, both homo- and hetero-
nuclear diatomic molecules are vibrationally Raman active.

 Specific selection rule (harmonic approx.): n = ±1:
 lines to high  of incident radiation (anti-Stokes): n = –1.
 lines to low  of incident radiation (Stokes): n = +1.

 Line intensities  Boltzmann populations of vibrational states
involved in transition, hence anti-Stokes lines (excited states)
are weaker.

 Stokes and anti-Stokes lines have also
a branch structure arising from
rotational transitions accompanying the
vibrational excitation.

 Selection rules (as in pure rotational
Raman): J = 0, ±2: O branch: J=–2;
Q branch: J=0; S branch: J=+2.

Hence:
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 a Q branch exists for all linear
molecules!



The vibrations of
polyatomic molecules

 Diatomic molecule = one vibrational mode: the bond stretch.
Polyatomic molecule = several modes of vibrations: all bonds
and angles.

Normal modes

 We consider a molecule of N atoms:
 nonlinear: 3N – 6 independent vibrational modes.
 linear: 3N – 5 independent vibrational modes.

Indeed, a full molecular description requires
3N coordinates (x,y,z for each atom). With
physically sensible grouping:

 3 coords needed for translational motion
of centre of mass.
 2 angles needed for special orientation of
molecular axis.
 1 angle (if nonlinear!) needed for
orientation around the molecular axis.
 the remaining are vibrational modes.

 Examples:

H2O = nonlinear triatomic, 3 vibration modes, 3 rotation modes.
CO2 = linear triatomic, 4 vibration modes, 2 rotation modes.
Naphthalene C10H8 = 48 distinct modes of vibration.



 A possible choice for the 4 modes of CO2:

 stretching of one bond (mode L),
 stretching of the other bond (R),
 and 2 perpendicular bend modes (2).

Disadvantages: non-independent (energy flows backwards and
forwards between L and R); position of centre of mass varies.

 Better, simpler description: linear combinations of L and R:

 1 = symmetric stretch
 3 = antisymmetric stretch
 2 (2x) = bending modes

Advantages: 1 and 2 independent, that is, one does not
excite the other.

 Normal mode = independent, synchronous motion of atoms or
group of atoms that may be excited without leading to the
excitation of any other normal mode and without involving
translation or rotation of the molecule as a whole.

 key to describe polyatomic molecular vibrations.



 Each normal mode, q, behaves like an independent harmonic
oscillator (if anharmonicities are neglected), with:
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q = wavenumber of the mode q ; kq = force constant for the

mode q; mq = effective mass for the mode q.

 The effective mass of the mode = measure of the mass that is
swung about by the vibration = complicated function of the
masses of the atoms. Example for CO2:

 symmetric stretch: C atom stationary, mq depends on the
masses of only the O atoms.

 antisymmetric stretch and the bends: all 3 atoms move,
so all contribute to mq.

 In general for normal modes (example H2O):

 frequencies of bending motions are lower
than those of stretching modes.

 normal mode = composition of stretching
and bending of bonds (not the case for
CO2).

 heavy atoms move less than light atoms.



Infrared absorption spectra
of polyatomic molecules

 Gross selection rule for infrared activity of a normal mode: it
should be accompanied by a change of dipole moment.
Decided by inspection. Example, for CO2:

 symmetric stretch is infrared inactive: dipole moment
unchanged (at zero)
 antisymmetric stretch is infrared active: dipole moment
changes parallel to molecular axis because molecule
becomes unsymmetrical as it vibrates; parallel band.
 both bending modes are infrared active: dipole moment
changes perpendicular to the principal axis; perpendicular
band. Molecular linearity eliminated, hence a Q branch is
observed.

 Specific selection rule for a normal mode: nq = ±1 (harmonic
approximation).

 Spectrum analysis provides a picture of the stiffness of the
various parts of the molecule, that is, its force field = set of
force constants corresponding to all displacements of the
atoms.

 Complications: anharmonicities, molecular rotation (e.g.
hindered in liquids or solids).

 In liquids, lifetimes of rotational states are very short, hence
rotational energies are ill-defined:

 lifetime broadening > 1 cm-1 can easily result.
 rotational structure of vibrational spectrum is blurred.
 infrared spectra in condensed phases usually consists
of broad lines spanning the entire range of the resolved
gas-phase spectrum, and showing no branch structure.



Vibrational Raman spectra
of polyatomic molecules

 Gross selection rule for vibrational Raman activity of a normal
mode: it should be accompanied by a changing polarizability.
Decided by inspection (usually difficult). Example, for CO2:

 symmetric stretch is Raman active: alternate swelling and
contraction changes polarizability.
 other modes are Raman inactive.

 Detailed treatment leads to the exclusion rule: If the molecule
has a centre of symmetry, then no modes can be both infrared
and Raman active. A mode may be inactive in both. This rule
applies to CO2, but not H2O or CH4.


